Cloud Detection and Characterization using Topological Data Analysis
نویسندگان
چکیده
The presence of cirrus clouds introduces complex heating and cooling effects on the atmosphere and can also interfere with remote sensing from satellite-based sensors or from high-altitude aircraft. Detection of cirrus clouds thus provides an opportunity for atmospheric correction to introduce accurate compensation to images of the earth’s surface. Previous work on detection and characterization of cirrus clouds have been based on observing spectral signatures on a spectral channel with significant water absorption, or calculation of radiant intensity ratios over a water band to a reference spectral channel. Our proposed approach is based on applying computational homology to characterize the topological properties of cirrus clouds. We utilize an application called JPLEX to study the persistent homology of multi-dimensional simplicial complexes built from available hyperspectral or multispectral data. The technique has been successfully applied to discriminate subtle features in high dimensional noisy data sets. Previous examples include anomaly detection in hyperspectral images. The analysis makes use of the entire multidimensional data set (not just one or a combination of spectral bands) which may offer advantages in discriminating among various cloud types in a scene, as well as determining other characteristics of cirrus clouds such as altitude and thickness. Our initial computational experiment with an AVIRIS scene has demonstrated that JPLEX is able to discriminate between cumulus and cirrus clouds.
منابع مشابه
Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کامل